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PROBLEM

Obtain optimum realizable automatic detection methods for future Fleet use.
Specifically, develop distribution-free radar detectors for antijamming properties. For
this purpose, define and investigate the properties of a statistic which is used to deter-
mine whether a sample has extreme values. Investigate whether this statistic has the
property of achieving a preassigned probability of falsely rejecting the null hypothesis.
Compare the properties of this new statistic to those of the well known Mann-Whitney-
Wilcoxon U-statistic and suggest some radar applications.

RESULTS

1. A distribution-free detector (statistical test) is defined. Detection is based upon
the sensing of extreme values of the radar signal,

2. The test is compared to the Mann-Whitney-Wilcoxon test. It is found that the
new detector, which is distribution-free with respect to the class of distributions that
are symmetric about zero, can achieve closely a preassigned probability of falsely reject-
ing the null hypothesis when it is true provided the size of the sample is large enough,
Also, if the sizes of two independent sampies are sufficiently large, the detection prcoe-
dure using the Mann-Whitney-Wilcoxon U-statistic yields the same probability results as
those of the new detector using one sample.

3. The detection procedure seems to be poor in one radar application (against single
targets) but relatively good in another (against multiple targets).

ADMINISTRATIVE INFORMATION

Work was performed under SF 11.141.006, Task 0672 (NELC D121), by the
Information Sciences and Signal Processing Division. The report covers work from
June 1968 to January 1969 and was approved for publication 20 August 1969.

e S RS

:
!
|

Bugiber. S gy




Jrbintgininim 2

CONTENTS

INTRODUCTION ... page 3

Scope of report ... 3
Preliminaries . . . 3

THE STATISTICS ... 6

DISTRIBUTIONOF S ... 7

TWO-SAMPLE COMPARISON . . . 14
APPLICATIONS... 16

CONCLUSIONS AND RECOMMENDATIONS . . . 19

REFERENCES. .. 20

ILLUSTRATION

1 Interceptor detection system, simplified diagram . .

TABLE

1 Distribution of S forn=2,4,6,8... 12

T Ao AT e 27

.18

e e— s A ¢




INTRODUCTION

In most of the signal detection problems treated in the literature, the physical and
statistical characteristics of the signal and noise are well enough known that the func-
tional forms of their distributions can be stated and parameters of the distributions can be
specified. Frequently, though, it is possible only to make general assumptions concern-
ing the forms of the distribution functions of noise and signal. We must then find a
statistical testing procedure which can distinguish between the signal-present case and
the noise-only case on the basis of that small amount of information.

Scope of Report

In this report we discuss the problem of signal detection in a sample of size n
under the assumption that signals arise from a stochastically larger population. Such a
problem occurs in the radar ECM environment. The time element in signal detection
makes the problem relevant. More specifically, the equivalent statistical problem we
wish to discuss is that of deciding whether extreme values in a sample come from the
same distribution as the main body of the sample.

In general, a statistical decision procedure has the property that the ~tror of reject-
ing the null hypothesis when it is true (false-alarm probability) can be controlled. For
our consideration this means that we wish to control the error of deciding that extreme
values are present when actually no extreme values are present.

We describe a distribution-free procedure for determining the presence of extreme
values on the basis of a single sample of size n, such as u«ta from a multiple-range-bin
radar on a single pulse. A statistic S, based on a sample of ize n, is defined and its prop-
erties are investigated, especially the property of controlling the error of incorrectly
rejecting the null hypothesis.

It is shown that the statistic S is distribution-free over the class of cumulative con-
tinuous distribution functions which are symmetric about zero. A comparison of per-
formance is made with the well known Mann-Whitrey-Wilcoxon U-statistic. Some
applications are presented,

Preliminaries

Any distribution-free decision that a value is extreme must be based only on com-
parison with other sample values. For example, we compare the k largest values or the
q smallest values with the remaining values and on the basis of this comparison make a
decision as to whether or not extreme values are present in the sample. The source of
our data is a sample of size n (x4, ... ,x,,). We restrict ourselves to the probiem of
detecting large extreme values because of the nature of the applications we wish to
make, It is easy to see that if we sample simultaneously from two populations, one of
which is stochastically larger than the other, we can expect extreme values to occur
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more frequently than if we sampie from only one population. Therefore, we formulate
our hypotheses as follows:

Hy: (nosignal). x;: i= 1, ..., n has distribution F(x), where F(x) = 1 - F(x); that
is, the distribution of x is symmetric about zero.

H,: (one or more signals). Some proportion p of the sample has distribution G(x)
where G(x) = F(x-a),a > 0, and the rest of the quantities x come from the population
whose distribution is F(x).

This means that we are sampling either from one population or from two popula- !
tions, one of which is stochastically larger than the other; that is, G(x) is stochastically
larger than F(x); (F(x) > G(x)).

With the above formulation of the hypotheses we wish to prove the following lemmas.

LEMMA I, Given a random sample of size n, n = 2m, where each. X;,i=1,...,n has the
distribution F(x) of H,,, then g(y] s ous ym) = g(—y_m, vy -yl) and the distribution of
Py s =Yy, 18 the same BY g s Ve

Proof: g(}:l,...,yzln)=n!(f(yl> f(y2m> Ll CARL TS (2 - 91)

The second part follows.

LEMMA II. Under Ho,

i
P[-y, >yn_l.l = z (k'H l) (1 /2)"* i , where Vi o Yy are the order statistics and
k=0
asin Lemmal,n=2m,i<m, j<m-1,andy, <O0.

vt | s L7 o )i

bt
Using integration by parts, we obtain

(TFB'%W')T L] ‘ U [“2F(yx)]"°"’ + L-y' [F(y,,-;) -F(y:)]"'”
bl B ) o]

Applying integration by parts to the inner integral repeatedly yields

(z-l)' L 2 (k+i-1) (k+i-2) .. (k+1) k+ " [F Y, ]Ic+l~ Il 2F( )l,,.,_k

fi (yi) dy,

i,
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Letz=1-2F (yi) . Then we have

i ) i
I N GV RS A W LIy z (kﬂ‘-l)(, Jykt
@ k! (kﬂ‘-l) A ( 2 ) 2 k
k=0 k=0
which was to be shown,

It should be noted the probability P[-yi >Y. i] is distribution-free with respect to
the class of distributions which are symmetric about zero. It is not distribution-frec, how-
ever, with respect to the class of distributions symmetric about a point other than zero.

LEMMA III. Using the same hypothesis as in Lemma II, except that i < m, we have

i
P[‘J’H—l <pi< "yil = (‘i I) 2+

Proof’; P[)’m <Py < y:] G- 1)|(,,,]. )1,![ fy‘[yni
[#00) ] [F (o )| 4 150 ) ) o)
Vios Ony 01 = gz o O [0,

[2F(y"'/) 'll o f(y 1) f(yn-)' ) d, n-j dy;

Using integration by parts gives us the result

(_i-m'f “F Vi IW'I 1/2[1 <2F(y ]""'14. l/2fyi [F )]1.

[26(30.)1| 411 18 )| £ 0ng) Oy | €)

Repeated use of integration by parts produces the result

L S v (1)

(1/2)]'-‘7*1 [1-2F(y ]n—i—k f(y')dy'
We let z = 1-2F < ), using a method described in reference 1* yields

iz (kﬂ 1) (1/2)]4.“.1 (i:j)(l/Z)“i”

k=0

which was to be shown.

It should again be noted that the probability Pl-y,. +1 <y J < -y‘.] 15 distribution-
free with respect to the class of distributions symmetric about zero and no other point.
These lemmas are used in DISTRIBUTION OF ' S.

*See REFERENCES,
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If we let A be the event -y, > Vni > e/t and let B be the event - 1 > Ynj then
AUB 1s the event -y, > Vi Since 4 and B are mutually exclusive, P[4UB] = P[4]
+P[B] or

i (k+1 1) 1/2) ki - i (k+l)(l/2)k+l+1+(l+]) (1/2)'*/‘”1
k=0 k=0
The above is shown analytically.
. ‘ j
Z(kﬂ)(lfz)k” = Z)(kﬂ l) 12k + kZl (k:—ll) (/2!

We let k-1 = y in the second summation on the right; then we obtain

i (k‘;i-l) 1)k = i (kﬂ 1) (1/F* + 121 (J""i)(l/z)kﬂ
k=0 k=0 y=0 ’
i ]
- 26 (kﬂ-l) A/2)%*1 + }Zo (y;i ) /2> - (i;i ) (1/2)"*?
Rearranging terms yields
1 /2i (’;:i)(, )t = i (k+i- ) (/)% - (ljﬂ ) (1/2)"*2
k=0 k=0

We multiply both sides of the last equation by (1/2)*~! to obtain the desired result.

THE STATISTIC §

Lemma II of reference 2 strongly influences the definition of the statistic § which
we shall shortly present. To this end, then, we consider an n-dimensional random sample
of size one, x, ..., ~,, where each x, has the distribution F(x) as stated in /, and where

n=2m. We form the order statistics y,,y,, ... , ,,, and change the algebralc signs of the
first m order statistics to get

-ylv ':vzn oy -ym.ymﬂ, ,y,,-'

Let us write the sample as Wi sWos Y puats o s Ve If we now order the quantities w
and the quantities y, we get an arrangement which may look as follows:

Y+l <wm <Wm-1 <ym+2 <...<y".;
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Thus is just one of the %| possible arrangements. We now define § as
m!m!

n
S= z R(yi)
i=m+1
where R/ y'.\l is the rank of y; in the ordered sample of wand y. Itis easily seen that
m(m+1)

et e AL ASNE SRIRRN L A0 & o W B e W VB e R o oo

<8< m(3r;z+1) . The second sum occurs when all the w are less than all the y,

and th .irst sum occurs when the situation is just reversed. If H,, is true, we should expect
the w to be randomly placed between the y. If the w and y actually alternate,
§ = m(m+1) or m?, depending on whether we start with a w or a y. Because of H,, we
should expect S to be larger under H, than under H,. For this reason the decision rule
is as follows:

Reject Hyy if § > X where A is an integer so chosen as to yield a false-alarm probability ;
which is less than or equal to a. i

DISTRIBUTION OF § ;

By definition, S is the sum of ranks — that is, of positive integers and the same
value of § can be obtained by adding together different integers,
The definition of S, therefore, demands that we count the number of partitions of

m(m+1) << m(3m+1)
- 2

the integer £ which belong to tne range of S; , with the restric-

tion that the number of components in each partition is m. The generating function for
enumerating partitions with unequal parts by number of parts is (page 113, reference 3):

G(t,a) = z u(t,k)d*

k=0
where u(t,k) is the generating function for partitions with k unequal parts. Therefore, let
us define Gb. n(t,a) as:

n-b+1

Gy 1) = z u(t.k)k
k=0

G,, ,(t.a) is the function for enumerating partitions of an integer ¢ with unequal parts by

number of parts where the smallest part is greater than or equal to b and the largest part
is less than or equal to #n. The function u(z,k) is the generating function for partitions

e

SN i e Mot oy e . ok




with k unequal parts with the restrictions mentioned for G, n(t,a). This leads us to the
following theorem:

THEOREMI. Ifin G, ,(t,a) we let k = m, we obtain

u(t,m) = <’m ol ”) <t”'*”'2-t"”) ...(tb-t”*l)

( 1—:)(1-:2)... (l—t"')
Proof: G, ,(raf) = (mr"* 1) (m:"* 1) and (1+ar"+1) G, ,(19)

N (Ha’b ) G, ,(t.at), so that

n-b+1 n-b+1 n-b+1 n-b+1
2 u(t,m)a™ + z u(t,m)e™ it = z u(t,m)a™ ™ + z u(t,m)a™*1gmtd
m=0 m=0 m=0 m=0

Making a change of the variable of addition in the second and last summations and equating
coefficients of a™ results in

u(t,m)[l-t’"] = u(:,m-l)[t'"*b'l-:"”] )

or

( m+b~-1 n+l)
L sl )
(1)
With u(t,0) = 1 and repeated iterations of (2), the desired result is produced. Definition:
Let N(b, m, n, r) be equal to the coefficient of ¢” in the expansion of u(t,m) in powers of ¢.
N(d, m, n, r) is the number of partitions of the integer » into m distinct parts such that all
parts are greater than or equal to b and less than or equal to . It should be noted that N is
actually a function of only three distinct variables — b, m, and r — since n = 2m, In order
to find ihe distribution of §, we must know the probability of each of the ":, possible
arrangements of the combined orderings of the w and y. If we order the combined sam-
ples of w and y, the result is that we obtain either

u(t,m) = u(t,m-1)

a. Arun of w, then a run of y, then a run of w again, etc., ending either in a w ora y;
or

b. Arunofy, then a run of w, then a run of y again, etc., ending eitherinaw oray.

The following theorem produces the probability of a particular arrangement of w and y,

THEOREM II. (1) Under H,,
3m-k-1\"1 -
Plcondition (b) above] = ( ek ) P[yk <W, <Vpal® (1/2)3m-k

~rank )l
= qjay T

where y; , m+1 < k < n is the last y in the beginning run of y and the rank (wm) is the
rank of (w,,) in the combined sample of w and y.
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(2) Under H,

mtk-2 )'l

P{condition (a) above] = ( el

PIwr<-ym+l <Wk-ll

n-rank (ym+])+l

= (172y"**-1 = (172)
where w; , 1 <k < m is the last of the w in the beginning run of w and rank (ymﬂ) 15
the rank of ., | in the combined sample of w and y.

Proof: The proof is given for the case where n = 6 and m = 3. We then have
Yp Yy VypVeVs Ve
Py Yy V3V Vs Ve
Wi Way W, Vg Vs Vg
The number of ordered arrangements of the w and y 15 20, and they are:
w3<w2<wl <Y <Vs<Ve
w3<w2<y4<wl <ys<Jye
wy <wy <y, <ys<w; <Jg
w3<w2<y4<ys<y()<wl
w3 ¥y <wy <wy <5<V
Wy <y <wy<ys<w <Ve
Wy <Yy <wy<ys <y <W,
w3y <y <ps<wp<w <Y
Wy <y <ys<wy<yg<W,
w3<y4<y5<y6<w2<wl
Now interchanging w, with y,, w, with y¢, and w; with y¢ yields the other 10 ordered

arrangements. We now consider arrangements which satisfy condition (a) and for an
example consider

w3<y4<w2< w<ys <V
w3<y4<w2<y5<wl <y6
w3<y4<w2<y5<y6<w]
Wy <Py <ys<w,<w, <y,
Wy <y4<y5<w2<y6<wl
Wy <y <ps <y < v, <w

Since these arrangements exhaust the ways in which p , can he between wy and w, and
since each arrangement is mutually exclusive of the others, 1t 1s clear that

le3 <y4<w2<wI <y5 <y6]+...+ le3 <ye<ys<yg Swy,<w,

1242
=P[w3 <y, <w2] = ( ) ) (172221 from Lemma Il
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Next we wish to show that the above arrangements are equiprobable.

Plw, <y4<y5<w2<y6<wl] '-’P[-y3 <y4<y5<-y2<y6<-yll
0 -ylfﬂ f-yz Ys (Ys
=6 fv)f(y)t(y)f )fy)fy)dy dy,dy dy. dy dy
6]__[, g J0 fo./-y4(3 4 s("z(s(n 3V, by sdy,dyedy,
] 0 Yy Vs fé,)
=6! - y
o[ [ | bbb st

since F(y) = I-F(y),

[ R b o,
f/'ﬂfo [1-?1"'0’2)] (yz')f(ys)f(yl)dyzd%dyl

5 2P0’
o

« 6! L 1/16“-21;01)]5 f(y,)dy,

f(ys)f(yl)dy(;dy \

111
YA X B
63" 3

P W, <)’4<Wz <,V5 <y6 <wl] =Pl-y3 <y4<-y2 <y5 <y6<-yl]
0 91 (Y6 (0 72 (Y4
L Lk b s
=Jo Jo Jyho Uy, 3) y‘)(yz ¢ (y‘fé'l Y38 48,75 dygdy

=L
32
l’w3 <y4<w2<wl <Y <ysl =Pl-y3< Ve <P1<9,<)s <-y61

L L LT,

32
1t is easily shown that the other three probabilities all are equal tos-z- Therefore, we

obtain the general result

1y +
P|condition (a) above] mkk12 P[wk <Py <Wig | =12y

The example immediately gives us the resuit

n-unk(ymﬂ) +1

Y%=/
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In a similar manner we show that

11
P‘condition b) above] = ( 3’:: l) Plyk <W,, <Vis+ 1]

= /2y =2y m

Corollary I
P[—ym e <Y <o <yn] = l’[ym+l €LY <y, <.< -yn] =@/2m
The proof can also be easily obtained with Lemma II. The distribution of §is

obtained with the next theorem:

THEOREM III. Under H,

P[s=r] = P[s=r| condition (a) is true]
+ P(s=n | condition (b)is true]

= [N(1,m,n,r)-N(@2,m,n,nr)] (1/2)>™-1
m+l

+ Z [N, m,n,7) - N(b+1,m,m,7)] (1/2)"*0~2
b2

where N(m+2,m,n,r) =0

Proof: The proof of the theorem follows from the definition of N(b,m,n,r) and
Theorem ]I

Definition: A is the critical integer; that is, P[S> )] <a
If = 10°®, we need to consider a sample of dimension greater than or equal to 40 to

obtain the desired critical region. The distribution of § forn = 2, 4, 6, 8 appears in
table 1. The mean and variance of § are obtained in the next two theorems.

THEOREM IV
M oml ] )
E[S) =mg3;n+l! _E z z (k:-l)(”z)kﬂ
=1 j=0 k=0
Lify,> Ynj
Proof: Let Ui i . Then z Ui ni equals the number of times
* " 0 otherwise Y '

the negative y (that 1s, the w) exceed the positive y, so that § = "—gﬁnz—tl) - z U, e and
iJ

I
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TABLE 1. DISTRIBUTION OF S.

m=1 n=2 r Pls=r]
1 1/2
2 172
m=2 n=4 3 1/4
4 1/8
5 1/4
6 1/8
7 1/4
m=3  n=6 6 1/8
7 1/16
8 3/32
9 1/8
10 3/32
11 3/32
12 1/8
13 3/32
14 1/16
15 1/8
m=4 n=8 r P[S=1]
10 1/16
11 1/32
12 3/64
13 7/128
14 5/64
15 7128
16 9/128
17 1/16
18 5/64
19 1/16
20 9/128
21 7/128
22 5/64
23 7/128
24 3/64
25 1/32
26 1/16
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m!3r;+l_)_ zml mz: ;) (k-f,t‘l) (l/ZY‘ﬂ
=1 j=0 k=
THEOREM V
m ml tid . m ml il +,2
s Y 3 Y ()onr (35 (o]
i=1 j=0 k=0 =1 j=0 k=0
m m-l k1 | .
A338 S (o
=]l k=2 /=0 q=0

(‘I"’(;'-l) a2t

a2 53 S SIS ames) (S (5

2-3 i=1 k=2 j'o n=0 qno

+ i (™)) anpet ‘

q=0

m 21 ml k—l{ Q-1

Proof: Since S is of the form b + w, b a constant and w a random variable, and
since V(b + w) = V[w], it is easily seen that
2

vis) = V’EU""] E(E ,n,) (;E(U,,n.l))

. E[ Uing Uk,n-Q]
i itk i=k itk

0 * e ™ e

§ (o

13
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But, E[U?] =E[U] so

m m- j m m- i 2
w333 (e[S S (e
=1 j=0 k=0 =l j=0 k=0

+ z E [Ui, n-iUk, n-Q]

If =R, and nj # n-k, then
E Ui, nef Ui, nk | =B >yn_l. and-y; >y, . ] = P[—yi >ya]when a = max ’n-j, n—k].
If nj=n-kandi# €, then

E Ui. ni UQ' nil|= Ply, >y"_l] where b = max [i, 2].

Ifi > fand nj > n-k, then

E[U, ny Vg m] =2[2:>71]

If i <2 and nj > n-k, then

E[U, ny Up e | =B[> <20y <] Pl-y>yn_k]+P[-y > P

Substituting the probabilities into the formula produces the desired resuit.

TWO-SAMPLE COMPARISON

» Since the purpose of ordering the n-dimensional sample, then changing the signs
of the first m (n = 2m) values, was to compare half of the sample (the upper half) with the
remaining half (the lower half), it is therefore appropriate to ask how the foregoing
development would appear if we actually used two independent m-dimensional samples.
We therefore wish to prove the following lemmas,

THEOREM VI. Given X1y 2 % (m) and Yy =¥ gmy tWO independent m-dimensional
samples of order statistics from a cdf F(x) when F(x) need only be continuous, then

P*en-n <Yenp <x(m-i+l)]= ( ,,':,) [ [F@] 2"+ (16" (m_'l”;)!j! dF()

= -——-———!—-(m.i) (22'(’") i<m; j<m
@nif) (1)

ity
Proof: With the use of

P[rs = kl =(;i) L " Bl (1FYk 4G
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where n-1 observations have cdf F and one observation has cdf G, r, is the rank of the
observation having cdf G in the combined sampie; the theorem can easily be proved.

THEOREM VII. Given the hypothesis stated in Theorem VI, then

P[x 1y > l=(m.,'+1) i (',:')(;’;)
(m-i+1) 7 Y (m:) & (k+m’-'i+ 1) (k+m+1)

where i <mandj<m.

Proof:

P J"(m»iﬂ)>J’(m-i)] = L P[ym-i<x(m-i+l) [ X(mje1)

=x(m-i+l)] ‘“’I"(m.im Sx(m-iﬂ)l

= f‘ P[J’m-/<"(m-i+1)l P ["(m-nl) SX(m-i+1)

. m

i 2 f:(':) [F<"(m-z+n)] * [I-F(x(m_ ﬁl))]'""‘ E

k=m-j

m!

m [F("(m-#n)] ™ ll'F ("(m-m))] “ dF("(m-m)

i i ,[.:(;n ) [F (x(m-ﬂl))]k“""[l-F(x(m_M))]m-kﬂ-l

k=m-f

{
'
'
)
i
i
y
j
|

m!
(m-0IG-1)! dp(x("'-f*n)
Letu =(F x(m_m)) ; then we have

D een()(7) Lo

k=m-J

= (m-itl) zm: ggl)(':) e
=l 1) (k4mei+1)

which was to be shown,

THEOREM VIIL. Given the hypothesis stated in Theorem VI, then

/

. - kti-1 +i
lim Px(m_m)>y(m.n] - z (" ) arn
m oo k=0

15

B0 e S 8 M F AR S o




}
!
H
i
$

16

> ()i e

Proof; lim Plxip 1) >imep | =tm Y N
myoo M>o0 pop i (k+ 1) (ktm-i+1)

m-it+

Let g = k-m+j; then we have

i (.”‘)Q*"' ) (m-i+1)
tim z 1/ \gtmj , which, through a method described in

2m ..
+00 2mig-j-i+]
m*® =0 (2m+g-j-i+l) (2mtgj-it1)

/
reference 4, results in 2 (]‘gt"';l) (1/2)"3+ i Now, letting j~1 = w, we obtain
I

=0
0 j
}: ( “’:l) /P = z (“’;’1) (1/2)**, However, by Lemma Il this is
wxj w=(0
P[-yi>yn_i].

THEOREM IX. Given the hypothesis stated in Theorem VI, then

i _ [i%j +i41
fim PIx(m-i)<"'(m-i)<"(m-1+1)| = (i )(1/2)”
m>oo

m\ /m
Proof: lim N (’>(f)

moes Qi) ()

i+
reference 4. However, by Lemma III thisis P}-y, < Ym-i < -yi]. As demonstrated, the
distribution of S depends directly on Lemma III and Lemma I1, so that for large values of
m, the same values for P Yin < Vn.j < and P|-y; > Vn.j|are obtained in the one- and
two-sample case, and, hence, the procedure of using S leads to the same result. It is known
that if we have two independent samples, the statistic § becomes the Mann-Whitney-
Wilcoxon statistic, which, as is well known, is asymptotically normally distributed.
Because of the great difficulty of obtaining detection probabilities, they are not included in
this report,

< ( l*'f) (1/2)"*7*1 which is obtained by using
i

APPLICATIONS

The distributions considered in hypotheses H;, and H, satisfy Lemma I, reference
2, and because of Lemma II, reference 2, a one-sided test was considered. If we are inter-
ested in detecting a single enemy object, such as an airplane, using a radar device, we can

5, e Wy
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do better using the statistics considered in reference 2 than the one considered here,
because the statistic S is relatively insensitive to one extreme value in that it does not con-
sider its magnitude, The statistic § is sensitive to enemy objects in the plural — to a fleet
of gun boats, for example, or a number of dense air targets or hostile troops. It would serve
a valuable function therefore in detecting a concentration of the enemy.

A second application is that of intercept of frequency-hopped signals (radar
or communications).

Suppose that the message or radar transmission consists of a number of frequency-
hopped pulses.

FREQUENCY 4

1
-

e o
TIME

The detection system illustrated uses a bank of narrowband filters, each of bandwidth W.
The output of each filter is energy-integrated over time T, the message length or radar
transmission length. (This could be continuous integration of a moving-window type or
some form of integrate-and-dump — the false-alarm rate depends on the decision rate.) In
the presence of a frequency-hopped signal, a substantial portion of the frequency cells are
occupied at various times during the signal time T.

The distribution of the integrated energy V,(t) is given by the chi-square distribu-
tion with 2 TW degrees in the noise case (reference 5). TH will be very large, and Urkowitz
shows that for large values of TW the normal distribution is a very good approximation to
the distribution of V(z). Since the quantities V,(t) have been normalized by the noise
power density for the respective filters, all x; will have approximately the same variance.
Thus, the x; are identically and symmetrically distributed about zero in the noise case. In
the presence of certain types of interference, this will not always be true. However, the
statistical test described tends to alarm only when a substantial number of resolution cells
are occupied (even at low signal-to-noise ratios), and its false-alarm rate will not increase
appreciably when only one or a few cells have interference signals, even very strong signals
(fig. 1). Thus, the false-alarm rate will tend to be constant even in the presence of noise
plus interference.
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CONCLUSIONS AND RECOMMENDATIONS

It has been shown that the statistic S has the property that any value of a can be
closely obtained provided the dimension of the sample is large enough and the underlying
distribution F(x) has the property that F(x) = 1-F(x). Also, if we consider two indepen-
dent samples from a continuous distribution F(x) and the dimension of both samples is
large, then the procedure using S leads to the same result in both cases; that is, the case in
which F(x) = 1 - F(-x) and one sample is used and the case in which F(x) is continuous and
two samples are used. The test procedure using S seems to be poor in one radar application
(against single targets) but relatively good in another (against multiple targets). It was also
indicated that S can be used to intercept frequency-hopped signals.

It is recommended that before this new detector is implemented some detection

probability results be obtained either by analysis or by simulation by Monte Carlo methods,
for example.
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